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TECHNICAL MEMORANDUM NO, 1037

THZORY OF HEAT TRANSFER IN SMOOTH AND ROUGH PIFES5*

By G. D. Mattioli

BASIC CONSIDERATIONS OF FRICTION TURBULEWNCE

Heat transfer theory in the turbulent region follows
from the theory of turbulence described in a Dbook by the
author (reference 1). Prandtl (reference 2) postulates
momentum trsnsfer, Taylor postulates vorticity transfer,
while Mattioli postulates both.

Prandtl's attack was based on the foundations of ki-
netic theory; the momentum tranefer by the moleccules ex-
plained the viscosity. But a large difference exists be-
tween molecular and turbulent motions. The molecules are
small and their linear momentum is sufficient to explain
their behavior, while the elementary units which partake
of turbulent motion are large, and both their linsar and
angular momentum must be considerecd.

In the turbulent regime, the elementary units (which
are not separated) will be considered as soparate enti-
ties from a dynamical point of view. The momentum (per
unit volume) p v (p = mass density, v = veloecity vector)
must be augmented by the unit angular momentum p 1% w,
where w = rot v, which describes the vorticity of the
mean motion, and 1 is a length which has becen introduced
on dimensional grounds. '

Across each surface in the turbulent recgime both 1lin-
ear momcntum and angular momentum are transforrcd, and
each exchange is dynamically equal t0 a fraction of the
inner stresses. X s

Let x coincide with the tube axis; w 1is the veluci-
ty in the positive x-dircetion, r the radius from the tube
axis, € the eddy diffusivity, p the mass density; then

d

P € 3y is the momentum transfer per unlt m~rca and time in

* . B

"Theorie der Wirmelibertraguig in glatten und rauhen Rohren.®
Forschung =uf dem Gebicte des Ingenicurwescns, Bd. 1i,
no. 4, July-August 1940, pp. 149-158.
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the radial direction., .This transfer is equal to the tan-
gentlal shear®

Trx =_p € %% (kg/m®) (1)

Since the vorticity transfer of each element of mass does
not vary, the corresypcnding stress tensor is symmetrical;

that is, Tpy = Tgp. Tpx 18 the X component of the
stress, which acts on the element in a direction perpendic-
ular to the r-axis. If T., = Tgy = 0, then the tensor

is completely defined. The equation

du
W= o ==
=5 (2)

is the vorticity of the mean motion. In view of the defi-
nition of ¢, the difference between the vorticity trans-
fer per unit time in theg positive and negative directions
of r is 2mr p ¢ d{1” w)/dr, .and

d{ a(1® w)
Er I Sl

is the rate of increase of the vorticity between the radius
r and r + dr. On a unit volume basis '

_ 1 d a(1? w)
M".?a;[rpe——d?—“] ()

~

is the increase of vorticity per unit volume in a unit time.
In the steady state the density of vorticity must be con-
served. On the surface of each volume element AV stresses
must exist which cause a moment about the center of the el-
ement of . - M AV which destroys the point-to-point vari-
ation of the vorticity. About the axlis of rotation of the
element which coincides with the direction of the vortices,
conditions are symmetrical; therefore, 1t is natural to

postulate that Oprs Opgr etc., the components of the stress

" tensor are:

Oxx = Opr = 05 Opx = ~ Oxp = M/2

This tensor is antisymmetrical. The viscosity generates
.inner forces, the corresponding tensor being:

*Trx denotes the x~component of the internal pressure act-

ing on the surface element at right angles to the r-axis.
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-— . M — — u
Vxx = Vrr = 0§ Vpx = Vxpr = P V gy
where v ‘is the kinematic viscosity. The components of
the total stress tensor then are:
" du
bxx = Txx + Oxx * Vxx = 0 bpp = 05 byp = P(E+P) ar
M du M
- 33 brx = ple +v) — + 3 {d)
If p = constant and gL . constant, then
1 a(r ¢...)
2T Prxl L8P L constant (5)
r dr dx
for equilibrium on the element r to =z + dr, of length

dx. From these equations follow the

Employing equation (4):

equations of motion.

14 du ri d .
Bl [p(e+v) r o2 I 22 (6)
r dr r 2 dx
nd intcgrating, lotting = 2 = - a;
a sra 29 v 5 p d.x = »
du M ar
- +V) = - = = p = 7
ple+v) -3 P % (7)
For r = 0, the unit -shear (left side of cquation) is
cqual to zero, whilc on the wall (r = R), the unit shear
(To) Dbecomes p o %.
R "o
The variable v, = @5 = —* is callcd the fric-

tion velocity and can be evaluatod a

A sccond cguation rosults from

fixcs 1. Bince the detsils of turbdbulcant
yet known, a formal hypothesis with
suffice: A vortex can be generated

fluid cloments striking the wall at
gential velocity and sticking there

t the wall.

the postulatc which
mixing are not
respect to M must
only at the wall, for
other than gero tan-
must experience a de-




4 NACA Technical”Memgrandum No. 1037

formation which will cause an eddy-to be generated. This
vorticity generated at the walls must be destroyed in the
interior of the fluid by the moment ~M, But what 1s the
law If p 1® w 4is constant in the r-direction, then. M

would necessarily be zero. One may understandably let M
be proportional to alp 1° w)/ar. Walls are not present
as vorticity generators in the case of free turbulence,
and for this case M = 0.

Then for our ecase -set

2
alp 17 w) ().

M =
M dr

and, together with equation (3), yields

1 a4 a(12w)] _ . alp 1% w)
;'a';“[f” pe 2zl |-y tlefrwl (o)

Further considerations based on Prandtl's similarity
theorem (in tho ncighborhood 6f the wall wu/vy = universal
function of (R - r)vs/v) allow ¥ and 1 to bo treatcd
as constants, where - - - . -

2 ve -
V=X ve; 1° = 2B ——= (10)
) M X Vx

and ¥ and B are universal constants of friction-gener-

ated turbulence. X 1is the Kidrman constant = 0,406 based
on measurements of Nikuradse. (See reference 3.) B 1is
harder to establish since it depends chiefly on the veloc-
ity 'distribution -near the wall. It would appear that
‘2,46 < B . < 3.5. ‘

THE HYDRODYNAMIC PROBLEM

Substitute (8) into (7) snd utilize (10) yielding

2 .
(¢ + V) ut - B 5_ a' = - %; (11)
© Vx
-whefe- u'! - ;udau
p4 - d.r’ sl dr'_e”f'

Integration of equation (9) yields
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€ru" = X ve(r u' - u + K) (12)

where K is the integration constant which must be fixed
by experiment. It is the only constant still open to quesx~ a
tion on theoreticgl grounds.

The houndary conditlions which must be gsatisfied upon
the integration of (11) and (12) follow from the Prandtl
similarity theorcm, and it seems natural to assume that pugs
the total unit shear at thc wall depends on the viscosity,
so that one may set:

v u! = %? = vx® for r = R

The velocity u at r = BE rnust also be introduced. The
exchange (austausch) phenomenon st the wall is damped in
such a thin layer that one may s=y that the inner interface
of the fluid at which turbulent motion is just sapparent is
at r = R, Zrom similsrity considerations

u = 4 v, for r = R

where A is a universal dimensionless quantity which de-

pends on .B8. TFrom experiment

A = B.06 for B = 2.x26
and

& = 7.7 for B = 2.5

Subject to these boundary conditions the integrals of equa-
tions (11) and (12) yield the velocity ~»nd eddy diffusiv-
ity distributions.
- 2Ru - .
For large vealues of Re = —5— (u = the mean velocity)
equations (3) and (6) may be integrated by an approximate
procedure, the result being correcct for Re—> = .

In the laminsr sublayer where the velocity changes
appreciably with distance, while the unit shear remains
sensibly constant, r may be replaced by R. Let R - r =
Vo the distance from the wall, then
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. y
. V* T gy
q) =ﬁ; d.n ='—v-'d.y, n = v*./ v (13)
8
If v = constant, then T = vxy/vp. Since y = F (r)
aF ve AT A%F vy 4 /vy dF) v% ,4®F 1 avy 4F
dr v an’ dr2 v an an/ 2 \dan® v an an

and if the dots represent derivations-with respect to 9,
equations (11) and (12) become in terms of the generalized
variables ol=u"), 1 (=y")

e e e Y v
<£+1>cp+p<cp_cp —-> (- 2) == x p--—z (K- u)
v i v Rv*
For large magnitudes nf Re, (XK - u) EJ%— is small
Vo

compared with $ and for most fluids the influence of v
is small, thus terms involving these two guantities will
be neglected. Then the above equations-become

: . e . ) (14)

<£—+ 1> ® +B ®=-1 and 3 ® = - X o and

v (15)

which is the same form as .vp = constant. That is, the in-

fluence of a variable v is limited to the equation (13).

Integrals of (14).,and (15). are fixed by the conditions
at the wall, which in turn represent the momentum transfer
mechnanism at the wall. The trensfer is dissipated in the
"t hin wall layer," which is to be thought of separately
from the main stresm as the "turbulent mixing mechanism" of
the main stream goes over into the pattern at the wall in

this "thin layer." The thickness of this layer i1s so small
that it may be neglected and the wall process may be
thought of as occurring in an interface., The point y = O

(T = 0) 4is.then the location of this interface (i.e., the
inner surface of the boundary layer, where the word "inner!"
means the side toward the center) and the boundary condi-
tions will be so applied to egquations (14) and (15).

1hn the case of an isothermal flow the nondimensional dis-
tance from the wall is T = vyy/v. For variable tempera-
ture vV Varies considerably near the wall and this must be
taken into account by a sultable expression,
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The mechanism of the process in the boundary layer
does not need to be known in detaill, but it suffices to
fix the veloclty and the veloclty gradient st the inner
surface of the boundary laysr. The Prandtl similarity
thcorem leads to the statement that

®=4A and @=1 for T =0
For A = 8,06 (B = 2.46) or A= 7.7 (for B = 3.5) it
follows from (14) and (15) that

(%2 = V/BX (18)
.=y=‘0
and if v 1is invariable

(Ei> = V/;; w = A v, (17)
dy =0

2%

that is, on the inner surface of thc boundary laycr the
eddy diffusivity is not zerc, which follows from the con-
cept of the separatc (from the main stream) boundary laycr.

Eguations (14) »nd (15) are intcgrable for B # O
a/nd yicld 2 simple intcgral which 'is corrcet for Re —> =,
1f the velocity distribution ~t the interface boetween the
laminar sublaycr and the turbulent stre~m is utilizcd.
Substituting B = 0 nand A = Ag = 9.46, thoso integrals

become in parametric form (see refcrcnce 1, p. 105):

® = L = % (T - 1n T = 1) + A, . |
v S (18)
dy l /1 € 1
N —V*/ T—i<7+ln‘r—l>; ;'-:Tr-- 1
° J
. v d
where T = @ = — ég and is less thrn 1 cxcept at the wrll
wvhere § = 1. Alsé % = % -1 from (14) with B = O.

Small walucs of T deseribe the rcgion'in which the
laminar subl-~yer transforms into the turbulent core. In
this transition layer cquation (18) may be simplificd to
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.g 1.. . 1 . dy‘ l
O TN TV U i &y _ 1 (19)
Vi X.nT‘Ao Xn *f v xT

e

€
which are asymptotic for Re ——>>, > in the core
for this case. In this region one may neglect v com-
pared to €, and equations (11) and (12) become

r K - u
ceu' = - v,° T3 € u = X v, (ﬁ' - ——;——) (20)
the integrals of which agree with (19) for vy 0. The
hydrodynamic part has now been solved. The equations de-
rived agree well with the experimental measurements of
Nikuradse (referencc 3).

THE THERMAL PROBLZM

Let
a thermal diffusivity ) .
cg unit- heat ;épacity at conétagt.préssufer r
Y'; gP . Qeight.deﬁsity .
3 _ltémpé;aguré‘ ,

The enthalpy per unit volume is Y ¢ 4 (k cal/m®) and
analogously with equation (3) :

1 a X 93
;a—r- [I'“'Y_ Cp.(E_ + a) a—;‘

is the increase in heat content per unit time and volunme

in annular ring of width dr. If no sources.exist
39 19 [ 39
'Y —_— 1 = - — ‘Y + —ke
°p 3o = 52 Lr cp (e + 2) 5e } (21)

where ul(r) and €(r) must be obtained from hydrodynamic
considerations,

Zquation (21) may be integrated in a manner similar to
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that employed for the hydrodynamic consideratiéns. For
instance, the rate of heat flow normal to the wall in the
sublayer next to the wall is postulated as constant -
which is similar to the statement that the unit shear is
constant through the sublayer. Then

' b .y oF -q
colewa) 5o = oo

\ . ", N * p':
or, changing variables from r to T (equation (13))

(e ,ayas _ __a 5
<U v an Y Cp Vo ( 2)

where q 1s the heat rate per unit are= normal to the wall
nersured positively in the direction of wall to fluid.

Substituting the new veriable, T from equation (18)

vields
1 1
<__1+i>§_19_=_.__;!__£__1> (23)
T v/ OT X'chv‘,TT
a
For gases p = constant, so that this equation is direct-

ly integrable. For liguids, even though =a varies bdut

“little with temperature,. v cannot be considered invari-

able. It is seen that the influence of % (< 0.5) in equa-
tion (23) is important only for large values of T, so

that to effect the'formal'integration,_% will be set equ=l

to <%~ which 18 representative of the liguid tempera-
ture o¢ at the wall. The integral of equatisn (23) be-

comes equal to dg, for T = 1. In general,
Yo ey ) o oL (inr e ok 1n (bn —(rr 1)7)) (28)
.__q___. -, = - —X—(ln T +§'I‘—;:-T n To~ ro~ > 24
N B c, g 3600
where Pr = D = Y
. . k a
In the turbulent nuelesr flow =z, as VY, may be negs

leccted with respect to €. Then equation (21) becomes
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LR - N R 2% | - : 25
Y °p‘ax~r-3 dr [ °p £ T ar] _( )

-

where u(r) - snd e(r) are fixed by equatioh (20).

An approximate solution is now sought. The velocity
digtribution falls off so rapidly in the laminar sublayer
that u may be held constant in the turbulent core and
equal to the mean velocity u. Then may be set

gg = - n(x)

which is satisfied after the gulieting length. Then fron
equation (25)

1 — T
'Yce—=--§'chuRn(x)§ (26)

g
Q
H

)

The left side deseribes the heat flow through the walla
(—q) as r R; thereforec,

q =3 Yo, B U n(x)

and from equation (26)

‘€..._'_—_-...—————— (27)

which is identical with cquation (20). In the core

V. u - U,

D
— -(0_01)= — - (28)

where the cubscript 1 refcers to sny point; that is, the
tcmperature and velocity profiles are similar in this re-
gion, The temperature g3, 1is fixed by the requirement
that integral equation (28) in the buffer layer between the
laminar sublayer and the turbulent core must become equal
to equation (24).

2)l‘t should be noted that the approximations are also valid
if a 1is not neglected by couparison with €, and that
for Re—>o the thickness of the scmilaminar boundary
layer becomes vanishingly small. The above transition to
the limit toward the inner sidc of the semilaminar boundary
layer is thus identified with r——>R.
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TEMPERATURE DISTRIBUTION AT THE WALL

Since the numerical value of T is small in the buf-
fer layer, equation (24) becomes similar to equation (18)
when applied here:

Y o Vo

Y 1

=z P
Pro - 1 in I'o>

1
(9 - 80) = = = (ln T +

which, when compared with (19), may alsc be written as

Y e, v
— P * (s n 8y = a, + 2 (1 1 _ 1n P, ) (29)

q Vx 1 PI‘ - 1 o

)
Bquation (28) presents a similar equation for the

turbulent core; therefore, equation (29) yields the tem-
perature distribution in the whole tube with the excep-
tion of a thin boundary layer whose thickness becomes gero
for Re——>®. It contains the unknown temperature (d,)
of the fluid at the wall, which must be determined by the
.aid of thermal conditions at the wall. BReferring to the
velocity, the velocity increase is given as A v,, which

occurs in the boundary layer where, for the approximation
that B =0, A = Ay, = 9.46, Also, for the temperature a
simllar change must occur in the boundary layer. Dimen-

sional)consideratiOns lead to the relation (reference 1,
p. 306):

f(Pry) (30)

= 8. - 8, = A
6 o W éycpv*

Fere 9 is the wall temperature, Ay 1is 2 constant, and

w
f(Pry) is a function of Pr which could be evaluated if
the details of the heat transfer at the walls were known,
As it is, it is clear that the function must . be computed
for sn appropriate mean Pr, for the boundary layer.

Bven though the present theory will not allow the dc-—
tcrmination of f(Pr,) wuniquecly, its range may be cstab-

lished Dby mecans of a discussion of two limiting conditions,
between which the true funetion must lio.
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Say € = 0 at the inner surface of the boundary layer;
then there is no mixing of the fluid in the boundary layer
with that of the outer rogion (the core) and the heat trans-
fer must be by pure conduction. Then

a7 1 B =

dy Y cp a Y oep a

-e

where & is the fhicknéss of .the boundary layer. In the
region near the wall U/V* is the significant length;

therefore a likely relation is

_ 2
5= 0y o
from whieh there -follows:
- - 0 = Ay —2 P 31
- Y S Vx r ‘ (31)

By cemparison with (30), £(Pp) = Pr.

In accordsnce with equation (16)- !4y=0 is not gzero;

thiat is, there is turbulent transfer from the inner side

of the boundary layer which results in thé introduction of

new fluid at this interface. This fluid stream perpendic-

ular to the interface is proportional (reference I, p. 20)

to de/dy - which, at y = 0, 1is

.g:_;; = A vy (32)
y=o

o that the quotient of the thickness A ﬁ% of the bound-

ary layer and the magnitude of equation (32) gives the
mean time whick a fluid element spends in the boundary
layer:

(33)

The transient henting of the fluid element (which is being
rcnewed from the main stream) by conduction for a length

cf fimg T wunder temperature diffcrence 6 at time & = 0
is given by the equation (reference 4): .
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022 (v (GED)

A solution of g% = a gi% which meets the bdoundasy
v

conditions where 1 is the Gaussian function

x
2 —x®
Vix) = VF; L/n e dx
0

From equation (34) the quantity of heat which flows
to the fluid particles per unit wall-surface area is

T

_ o8 - al

Q—f’cha<ay> dt—G'ch/;
y=o

0

or the average heat rate is

so that

and by comparison with equation (30C)
£(Pp) =ﬁr

These calculations are qualitative, but they lead to
a likely supposition that

1
f(Pr) = Prm where 5 < m< 1 (35)

The problem of determining fthe mean Pr* is vet open.
One could set Pr, =-(Pr, + Pr )/2, the mean at the wall
and on the inner surface of the boundary layer (inner al-

ways means toward the wall center), but the logarithmic
mean seems more basic.
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In the vieinity of.the wall

¥
ay .
N = v*f 5 y(1/v)
[e]
k
and if % = é; o ¥ (which is » likely supposition), then
- w
L 1
— VYo Py Yy = Vo
l/v = =
ln Uw v v 1 r
W n -
Vo WO 0

@

1
Since Py - % varies with 1/vy mostly, spproximate-

ly there nay be written

P - F
r r
l/Pr* =<—1—>= v ° (36)
Pr P P Prw
rw I‘o 1 PI‘O

for the value to be used in f(Pr*).
THE HEAT TRANSFER EQUATION

Referring to equations (29) and (30), there results

upon summ=tion, using the theorem expressed by equation
(35):
Y e v
D * (d_4% Y= 2 4+ Ay PR BoA + } @ ———j;~—1n P ) 37
Q w!= oo o Fry o + 3 5.1 To (37)

The constant Ay is yet to be determined. dxperience
teaches (reference 5) that for Pr = const =~ 1 (gases)

the (o - &, )-curves snd the u-curves coincide upon appro-

priate change of scale - which result is accomplished an-
alytically by placing

Ay = Dy = 9.46
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in equatioﬁ (27). On the ¢theér hand, 1f this constant is

..to have universal significance, it must hold for.all val-

ues of Pp; if stuch is the case,
Y e, v . ;
P * u m 1 1 -
_— -9 == + A_(P =-1l) + = (1 - —>— 1n P >
q ( W) V* 0( r* ) X " Pr -l - ro
(38)
obtaining the mean over the cross section
Vo ?
<_u_>
v T(5- - v T
°p wld-dy) 1o+ =2 LAO(P Bl1) + = <1 - ———— 1n P, )]
¥Nu
which is the equation for Re Pr. Substituting A, = 9.46,

0.4086, and

X

’}\ = — d_p_ =—-8 /__’!‘_
u® dx \u
2 B

vields the expression for heat transfer

¢ = 2
Y e, U (5 = dy)
e
- A (39)
1+ /2 |9.a6(p, ®_1) 46 (1 - g=t— 1n P
3 «x0 r* - ..:.;. - ro -1 rO
where A is given by (reference 1, p. 133):
1 - 2.005 1oz Re /X - 0.806 (40)

J N
an equation which is in agreement with the results of
Wikuradse (reference 3) on smooth pipes.

It is not known how to compute Re in equation (40)
for nonisothermal flow. The influence of viscosity is
limited to the laminar sublayen on the wall side of which
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the eddy diffusivity € 1is, by equation (18), of the order

of magnitude of n. Since ¢ ircreases greatly with y

as one proceeds from the wall, and sinte- €'+ v is the com-
bined "austausch" coefficient, it is clear that the value

vy, on the wall side of the boundary layer will fix the re-

sistance to flow. Until better data are available, it will
suffice to set

2Ru
into equation (40), Utilizing
m= 0.77 (41)

equation (39) holds well for heating and cooling.

Actually, equation (Z9) contains properties which
are not known as the result of experiment; for instance,
Pro and vy, which are fixed by the temperature of the

sublayer on the wall side v, which can be fixed by know-

ing the rate of heat transfer. For fair values of
Prandtl'!s modulus, or for small temperature differences

B, = 5, since for sufficiently large magnitudes of Pr
most of the tempersture drop will ocecur in the sublayer.
Tor small Ppr (< 0.5), or for large temperaturc differ-

ences, one may cmploy cecquation (39) and éhe method of
successive approximations {(two will suffice). One detcr-

mines an spproximate gq, sctting 9395 = 9 (mean) in theo

following cquation and in cquation (36):

q
B = S, - ¥, = 9.46 q-——2~— Pra (42)

w

With thesec approximate proportics, thc e¢mslculation is reo-
poated, using cquations (39) and (40). Finally, the mean
temperature across the section f 1in area is: -

.- ¥ df
=7

- PR L

<

while the mixed mean 51 is usuallyfmeésﬁfed_ B

-
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Based on the mixed mean (reference 1, pp. 129-133):

Y e Vg e = V,\32
D % (3,-9 ) = il (1 % 10.6 <=:> )
q .W Vx . . . u
1

+ Ao (Pp, 1) + % (1 ol s ln Pro>
0

where u is the mean velocity across thg section. Then

Q
Yoep ul(9,-9y)

_ N i (43)

A A m / 1
24 /29 a6(Pr B - 46 (1= —2 1n P
1+10.6 = ¢/; [9 46(Pr ® -1)+2.46 ( T ro)]

APPROXIMATE EXPRESSIONS FOR PRACTICAL USE

For numericsl work, the Blasius expression is useful:

g = 0,0396 Re °-2° (44)

whic¢h holds well up to Re = 10°.

When Pr is avpproximately unity, one may derive

- ' 1 Pr -1
Pr™ -1 ®m (Pp-1)y 1 - —=— 1n Pp ~ -2 = 1
Pr - 1 . 2
_qu m = 0.77 and for small temperature differences
N 0.03 Re~0-25 :
. w = 0 96—06_1 - (45)
Be Fr 1 +1.69 Re °"'%% (B -1)

which sgrees well with Prandtl except that he obtains 1.74
for the coefficient instead of 1.69. For .m = 0.79, agree-

ment is perfect. The problem of more accurately determining
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m, natur=lly-.is opecn.

For large magnitudes of Pr, the term ln Pr

P, _ 1
may be neglected. In general, one must solve the equation:

— T
€ Re Ppr

0.0396 Re, °°2°

-

’ -0.125 | 0.77 1
140.199 Re, !-9.46(2’r ~1)+2.46 <1—-.P - 1n Pro>J
ro~
: (16)

Kraussold (reference 6 ) has proposed an empirical ex-
pression:

Yu - 0.024 Re ©°2pP,"" (47)

Re Pr

wvhere n = 0.63 for hesting, and n = 0,7 for coecling.
It is not uninteresting to compsre the two formulas. (See

the following table.) The right side of equation (48) is
computed for~ Pri = Ero,. which will hold for small temper-

sture differences.

! o N¥ufRe Pr)
Pr Bouation (47)
3quation {(46) Eeating Cooling
l n = 0.63 n = 0.7
1 0.00596 0.00380 0.00380
5] .001E5 ,00138 .00123
10 .000984 .000892 .000759
50 .000313 .000323 .000246
100 .000187 .000209 .000151

It is seen that for large Pr the results from equation
(48) lie between those for heating and cooling.

To illustrate the method of carrying out the computa-
tions, we will now compute the unit conductance for water
corresponding to a mean temperature of 50° C, a mean veloc-
ity of -100 centimeters per second through a tube of 3 cen-~
timeters diameter for a wall tempernture of 100° ©.
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As a first approximation, we will choose the proper-
ties for ¢ =50°; v, = 0.00562 cm®/sec, Pr, = 3.58.

For & = 100° C, Pr, = 1.72, then Pr, = 2,43 and
Ro, = 53,400, From equation (46), € = 0.001696, and from

equation (42), 8, -'9 = 31°. Therefore, #, = 69° C.

"

The propertics corresponding to the second approxima-
tion aro: wv,.= 0.00419, Pr, = 2.57; Prw = 1.72.

Pr, = 2.09, Re, = 71,600, and from (46)

C = = 0,001724

@ = =—— = 3600X0.001724X1Xx988x0,998 = 6120 keal/m2h® ©

ROUGH TUBES

Tubes may be thought of as completely rough if
Tk -
X > 100 (references 1 =nd 7). Actually, values of

over 60 will satisfy the regquirement. k is the mean
height of the wall asperities; still better is the equiva-
lent height of sand roughness. In this case, thce resist-
ance equation is quadratic where

LI 2.005 log Ry 1.73 (48)

SN Lk -

This equation has been established by- cxperimont ~nd was
derived by the aunthor on the asspmption that the boundary-
layor thickness (in which the wall transfer mocthanism trans-
pires) is cqual to k. Applying this postulate to the ther-
mal problem in A4 manner s¥milar to that obtaincd for a
smooth tube yiclds

a v, k vk
~— and. -4, a—3 *
Vx a Y ¢ Vo a

9=Ar,Yc

P P

whero the moan time of repose of the fluid particle in the
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boundary layer is now proportional to k/v«. On the same
basis as was used previously:

'-q_ v. k 1.
6 = 9, - O = O, . ( ; > P <n< 1 (49)

For a completely rough wall, the kinematic viscosity v and
the thermal diffusivity a may bo neglceted throughout the
wvhole tube, »nd in place of equation (29), the following is
obtained:

'YC Vo u
— L T (5~ 4,) ==~ & (50)
a Vo
where A = 7.7 for B = 3.5 yields the best fit (reference

1, p. 277).

From equations (49) and (50), it follows that

Y e, vk u v E ‘
P ; * \
1 ( w) N + O, o/ (51)

Avernzing (not mixed nmean) over the eross section, and in-
troducing the function factor yields

A/8
a = / (52)

— — n
Y cp u (o - ﬂw) 1 + J/K A kv, - A
8 r a

There »re no d-~t=a ag yet Agalinst whiech this expression can
be checked. Pohl's (reference 8 ) measurenents extend
kv

only to = 12 =as tﬁe formula demnands, while equation
v

(52) is good only for > 60. 3But from these measure-

nents, it is safe to stnte that the term in square brackets
in the denomination of the right side increases with in-

kv
crensc —gi a8 the formula demnnds, while it is independ-

ent thereof in smooth tubes. (See equation (39).)
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SUMMARY <L

The heat transfer accompanying turbulent. flow in tubcs
has been treated by a ncew thecory of wall turbulence, and a
férmula for smooth tubes has been derived (cquation (39))
which 18 asymptotic at Re—=o, It agrces very wecll with
the data available %o date. The formula also holds for the
flow along a flat plate if A 1is based on the velocity far
away. For rough tubes, the unit conductance is shown to be
a function of k vh/v; the two enpirical constants (Ar, n)
which appear in equation (52) cannot yet be deternined bve-
cause of lack of cxperimental data.

Translantion by L. M. K. Boclter,
University of California,
Berkeley, Calif.
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